

OPERA

Observational Products for End-Users from Remote Sensing Analysis

Fifth OPERA Workshop

September 11, 2025

SAR Disturbance Development Status

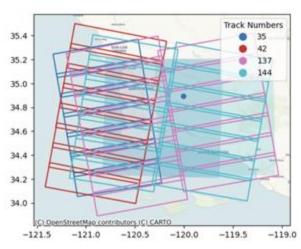
SAR Disturbance Development Status

Richard West

Jet Propulsion Laboratory California Institute of Technology

National Aeronautics and Space Administration **Product Overview** Product Usage Algorithm Workflow Requirements Validation Application Examples Summary and Next Steps

© 2025. California Institute of Technology. Government sponsorship acknowledged. This workshop is open to US and non-US participants. The material presented has been cleared for unlimited release. No ITAR information is to be presented.


DIST-S1 Product Overview

The OPERA DIST-S1 product has a near global* geographical scope:

Description	Maps surface disturbances using time series radiometric terrain corrected (OPERA-RTC)	Sensor Temporal Sampling**	6-12 days for Sentinel-1
Distribution	radar imagery Alaska Satellite Facility Distributed Active Archive Center (ASF DAAC)	Pixel Resolution (Northings x Eastings)	30 m
		File Format	GeoTiff organized by MGRS Tiles
Sensor	Sentinel-1 A/B/C (SAR)	Validated Release Date	Mar. 2026

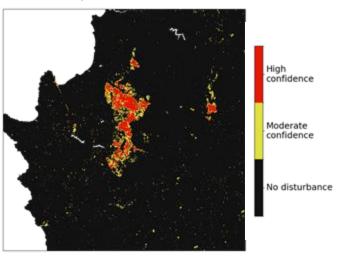
Southern California

Example Dist-S1 MGRS Tile

^{*} Excluding Antarctica

^{**}Based on Sensor input data availability

DIST-S1 Product Overview


The DIST-S1 product includes the same key layers as DIST-HLS to facilitate synergistic use

- Disturbance Status (8 bit integer with same encoding for DIST-S1 and DIST-
 - HLS)
 - 0 no disturbance
 - 1 first moderate confidence disturbance
 - 2 provisional moderate confidence disturbance
 - 3 confirmed moderate confidence disturbance
 - 4 first high confidence disturbance
 - 5 provisional high confidence disturbance
 - 6 confirmed high confidence disturbance
 - 7 finished moderate confidence disturbance
 - o 8 finished high confidence disturbance
 - o 255 no data

Metric Value (32 bit float)

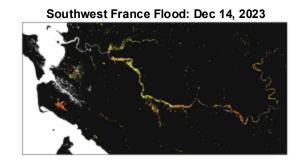
- Dist-S1: Normalized Z-score showing measured change of current acquisition relative to historical baseline in units of standard deviations from the mean. Thresholded to determine low and high confidence disturbance status.
- Dist-HLS: Vegetation index or Mahalanobis distance (like a normalized Z-

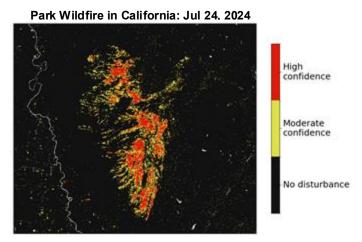
Wildfire in Valparaiso, Chile: Feb 4, 2024

DIST-S1 Disturbance Labels (acquisition: Feb 17, 2024)

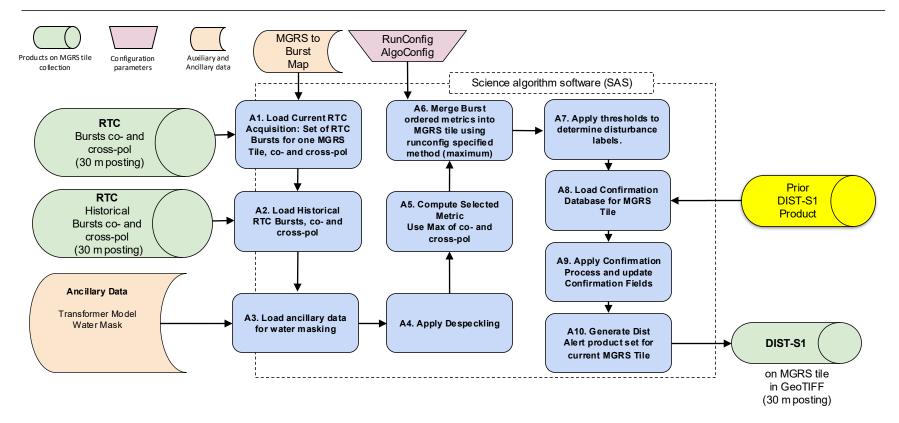
Radar and optical products constructed similarly, but results are expected to differ

score).


© 2025. California Institute of Technology. Government sponsorship acknowledged.

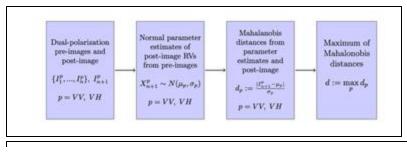

Product Usage

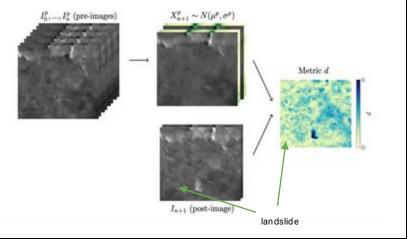
DIST-S1 products can potentially be used for a wide variety of disturbance monitoring:


- Track anthropogenic and natural vegetation/forest disturbance
 - Operational and post fire support
 - Monitor invasive species impacts to forests and vegetation
 - Forest mapping for arbor management
- Identify land cover changes that affect water quality
- Monitor vegetation health, disturbance, and recovery
- Monitor other types of disturbance such as: mining, long term flooding, sandbar development, urban development

Algorithm Workflow

Algorithm concept – disturbance metric


A disturbance *metric* quantifies (per-pixel) how likely a pixel is to be disturbed. Higher metric values indicate more likely to be disturbed. Our metric is a normalized Z-score which measures changes relative to a historical mean and standard deviation.


Our *transformer* model uses a set of pre-images to estimate the historical mean and standard deviation taking advantage of temporal and spatial patterns in the data. From this estimate, our metric is defined as the *deviation* of the *observed* postimage from this distribution as in [1].

The flow chart (upper right) shows how we do this for both polarizations.

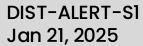
The image flow chart (bottom right) shows a visual summary of the *transformer metric* over the tragic New Guinea Landslide in May 2024.

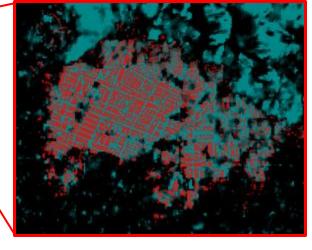
Reference [1]: O. Stephenson et al., *Deep Learning-Based Damage Mapping With InSAR Coherence Time Series*, IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-17, 2021

Requirements

Allocation for Algorithm Execution Time	Spatial Posting	Spatial Extent	Product Accuracy and Quality Notes*
16 hours	30 m	Near global (all landmasses excluding Antarctica) where input sensor data is available	The disturbance (DIST-S1) products, derived from RTC data, shall identify pixels having at least 50% vegetative structure loss per RTC pixel (approximately 30 m in size) between a current single-date RTC observation as compared to a set of historical RTC observations. The Disturbance Alert (DIST-ALERT-S1) product shall measure said disturbances with 80% accuracy per validation pixel for at least 80% of all validation products considered.

^{*} L2 accuracy requirements were concurred with sponsor and SNWG-MO


Validation strategy


- Stratified Set of MGRS Tiles covering different geographic regions and different disturbance types selected by UMD for Validation
 - ~98 Tiles
 - Substratified to 10-20 validation pixels in each tile.
 - Cover range of disturbance intensity according to DIST-HLS detection and including no disturbance
 - Reference data generated by human observers looking at a combination of high-res optical imagery from Planet Labs PBC, and HLS.
 - Quantitative assessment based on Dist-S1 results compared to Reference results to determine measures of precision and recall
- Qualitative assessment of ~10 test cases covering a range of disturbance types
 - Quantitative assessment using precision and recall possible in special cases where reference data can be assembled

Application Example: Eaton, Palisades Fires, Jan 7, 2025

16,251 homes directly destroyed by the wildfires

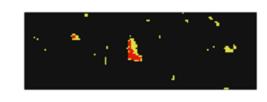
Pixels with detected disturbance: DIST-S1 sees more than just destroyed homes

 CAL FIRE Damage Inspection points for Palisade and Eaton fires

Papua New Guinea Landslide, May 24, 2024

npr.com(Mohamud Omer/AP/International

Villagers search through a landstide in Yamball, in the Highlands of Pagua New Guines, on Sunday, May 26, 2024. The International Organization for Migration feared Sunday the death totl from a massive landstide is


rganization for Migration)

much worse than what authorities initially estimated.

Makenur Descriptivites regions' Disentation for Rigidan.

DIST-ALERT-S1

High confidence

Moderate confidence

No disturbance

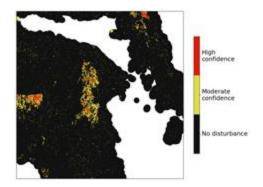
Dist-S1 sees the landslide area similar to Dist-HLS

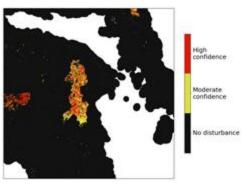
DIST-ALERT-HLS June 3, 2024

High confidence

> Moderate confidence

No disturbance


Attica, Greece Fire, Aug 11, 2024


Roughly 32,000 people displaced.

DIST-ALERT-S1 Aug 26, 2024

DIST-ALERT-HLS Sep 5, 2024

Dist-S1 sees the same fire boundaries as Dist-HLS.

Looking Forward

Operational OPERA DIST-S1 products are expected to become available in March 2026

Summary

- The OPERA project will generate DIST-S1 products from Sentinel-1 on a near-global scale
- The OPERA team will use OPERA RTC-S1 products as an input and provide users with the highest quality data possible
- We expect OPERA DIST-S1 products will be suitable for a wide range of disturbance tracking applications

Next Steps

- OPERA team recently delivered software required for DIST-S1 production to be used for Calibration and Validation
- Product calibration and validation began in August 2025 and proceeds through the end of 2025. Final delivery of software is scheduled for late January 2026.