

OPERA

Observational Products for End-Users from Remote Sensing Analysis

Fifth OPERA Workshop

September 11, 2025

Development status of DSWx-NI

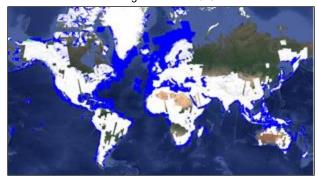
DSWx-NI Development status

Jungkyo Jung

Jet Propulsion Laboratory California Institute of Technology

© 2025. California Institute of Technology.
Government sponsorship acknowledged.
This workshop is open to US and non-US participants. The material presented has been cleared for unlimited release.
No ITAR information is to be presented.

DSWx-NI Product Overview



OPERA's DSWx-NI product maps near-global, pixel-level extents of **open water** and **inundated vegetation** from NISAR SAR observations.

Description	Pixel-level extents of surface water and inundated vegetation	Product Extent	109.7 km x 109.7 km (MGRS tile)
Sensor	NISAR (L-band)	Pixel Spacing (Northings x Eastings)	30 m
Distribution	PO.DAAC	File Format	Cloud Optimized Geotiff (COG)
Sensor Temporal Sampling**	12 days	Validated Release Date	Oct. 2026

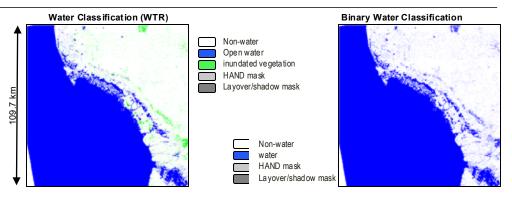
*All land-masses excluding Antarctica

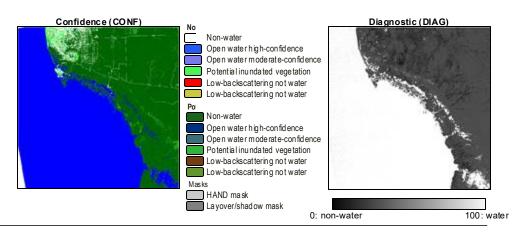
DSWx-S1 scaled to globe for Sentinel-1 acquisitions during November 2023

MGRS tiles (red boxes) and NISAR frame (purple) for DSWx-NI products

^{**}Based on Sensor input data availability

Classes in DSWx-NI Product




The WTR layer includes the following key layers:

- Non-water
- Open water (excludes ice and non-liquid states)
- Inundated vegetation
- Mask layers
 - Height Above Nearest Drainage mask (HAND)
 - Layover / Shadow mask

CONF layer includes more detailed classes for open water and inundated vegetation

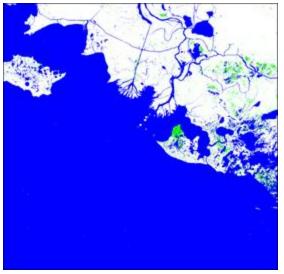
- Split between "Potential wetland" vs "Nonpotential wetland"
 - Not water
 - o Open water high-confidence
 - Open water moderate-confidence
 - Potential inundated vegetation
 - Low-backscattering not water (bimodality test)
 - Low-backscattering not water (ancillary mask)

OPERA DSWx products

The DSWx-NI product is designed to have pixel spacing, projection, grid, file format consistent with DSWx-S1 and DSWx-HLS

	DSWx-NI	DSWx-S1	DSWx-HLS
Input source	Radar NISAR GCOV (L-band)	Radar OPERA RTC-S1 (C-band)	Optical HLS
MGRS grid extent	~109.7 km x 109.7 km (3660 x 3600 pixels)		
Pixel spacing	30 m		
Projection	UTM coordinate (MGRS)		
File Format	Cloud Optimized Geotiff (COG)		
WTR classes	Open water, Inundated vegetation, Not-water		Open water, Partial Surface Water, Not-water

DSWx product examples



Wax Lake, Louisiana (MGRS: 15RXN)

DSWx-NI (ALOS-2 PALSAR-2) WTR (Aug 28, 2023)

Blue: Open Water Green: Inundated vegetation Gray: Layover/shadow White: Non-water DSWx-S1 WTR (Nov 04, 2023)

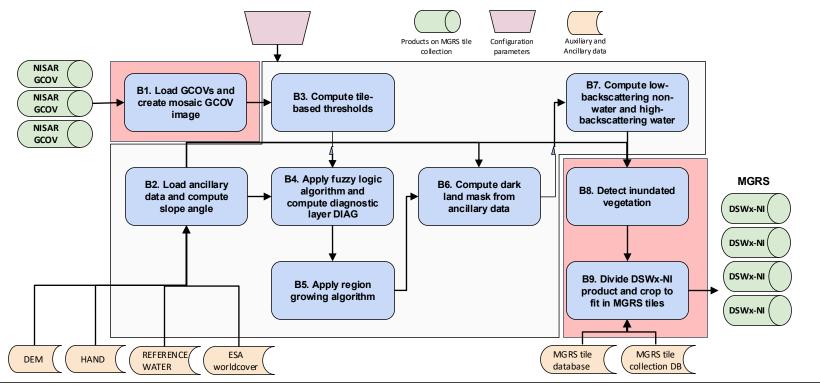
Blue: Open Water Green: Inundated vegetation Gray: Layover/shadow White: Non-water

DSWx-HLS WTR (Aug 31, 2022)

Blue : Open Water

Sky Blue : Partial Surface water

Cyan: HLS Snow/ice (high-confidence water)


Gray: HLS Cloud/Cloud Shadow

White: Non-water

Algorithm Workflow

Core algorithm to detect the open water is same as DSWx-S1.

© 2025. California Institute of Technology. Government sponsorship acknowledged.

This workshop is open to US and non-US participants. The material presented has been cleared for unlimited release. No ITAR information is to be presented.

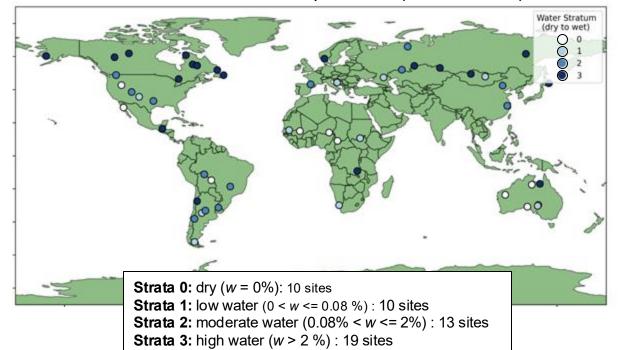
DSWx-NI requirement

Requirements

Open water requirement

- Detectable water features shall be 3 hectares in size or larger and at least **200** m in width.
- The OPERA DSWx-NI shall detect **open water** with a classification accuracy of at least 80% for at least 80% of all validation products considered.

Inundated vegetation requirement


- The OPERA DSWx-NI shall detect **inundated vegetation** in wetlands with a 80% classification accuracy (i.e. at a level that will be established given future algorithm and performance testing).
- The inundated vegetation beyond wetlands is TBD
 - DSWx-S1 (C-band) mainly maps inundated vegetation over the short vegetation.
 - DSWx-NI (L-band) has capability to map inundated vegetations under the tree as well.

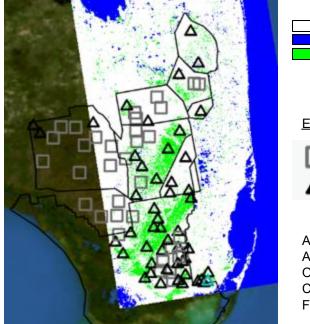
Open Water Validation strategy

- Sites represent 4 strata distinguished by amount of water coverage (from driest 0, to wettest 3).
- Nearly coincident NISAR, and Planetscope available at each site.
- Accuracy metrics (precision, recall, kappa, binary accuracy) will be computed and determine pass/fail for each site.

Global validation sites for open water (ex. DSWx-S1)

Inundated vegetation reference datasets

Several 'Tiers'


(All with independent, high-resolution image data):

Tier I Stage gage network (150+) with decades of hourly data (FL Everglades).

Tier II Multi-year in-situ data on water feature extent and/or inundation status at transect points (e.g., OR high desert marsh, ND Prairie Pothole, CT coastal marsh, WV forested swamp...).

Tier III UAVSAR/NISAR and other sites where we have ample expert knowledge (e.g., LA, AK, CDA,).

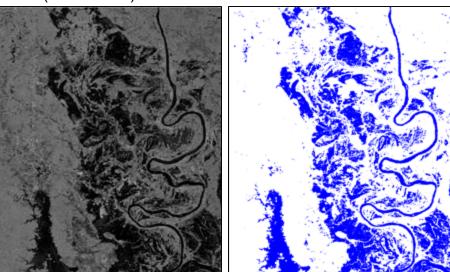
EDEN Class

Open water

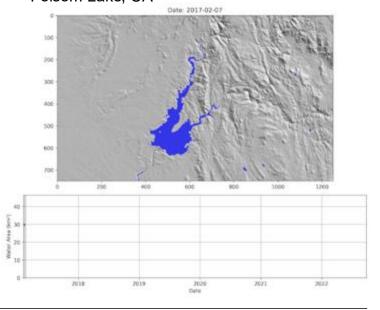
Inundated Vegetation

Not water

Water


April N=74
Agreement: 50%
Omission: 77%
Commission: 0%
F1 0.45

Product Usage



 DSWx-NI maps surface water and inundated vegetation, enabling flood and drought assessment and long-term hydrologic monitoring.

Flood detected from ALOS-1 Laos (2008-08-15)

Water extent changes detected from DSWx-S1 Folsom Lake, CA

Looking Forward

Operational OPERA DSWx-NI products are expected to become available in October 2026

Summary

- The OPERA project will generate DSWx products from NISAR on a near-global scale
- The OPERA team will use NISAR GCOV products as an input and provide users with the highest quality data possible
- We expect OPERA DSWx-NI products to be suitable for a wide range of applications
 - Flood, Drought, Long-term reservoir monitoring.

Next Steps

- OPERA team is currently developing all software required for DSWx-NI production
- Product validation will begin in Feb 2026