OPERA x Google Earth Engine

Daniel Coelho 9/11/2025

New Additions to Earth Engine's Data Catalog

We are in the process of adding the following datasets:

- Dynamic Surface Water Extent (HLS & S1)
- Radiometric Terrain Corrected Sentinel 1

The datasets will be available directly through Earth Engine and directly through Cloud-Optimized-Geotiffs

Quick Demo of Dynamic Surface Water Extent

Preview

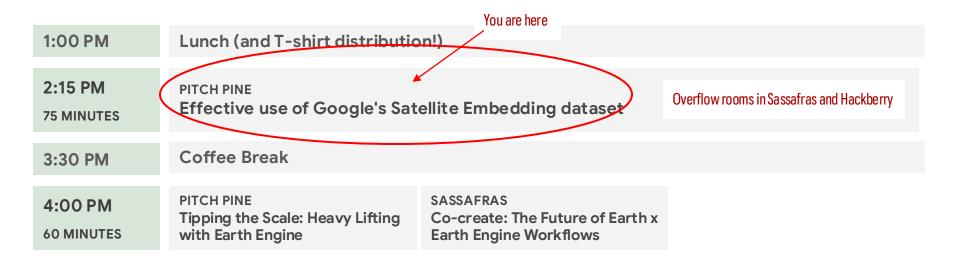
var dswx = ee.ImageCollection("OPERA/DSWX/L3_V1/hls");

×

https://code.earthengine.google.com/8d2067bb2b157038cf6bcc172f0ab8c7

Day 2 PM

AUG 26



goo.gle/g4g-nyc-satellite-embedding-dataset

Effective use of Google's Satellite Embedding dataset

Valerie Pasquarella & Emily Schechter

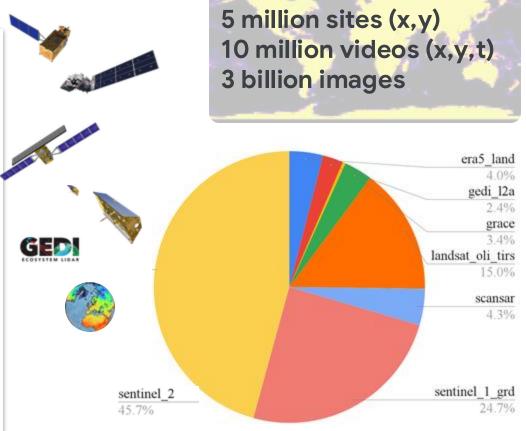
August 2025 | #GeoForGood25

Biplov Bhandari, Woolpert Digital Innovations
Kyle Woodward, Spatial Informatics Group
Angela Tsao, Stanford University
Álvaro Moreno Martínez, University of Valencia/IPL
Emma Izquierdo, Institute of Geomatics at BOKU
Mina Burns, Oregon State University

What's embedded in an embedding?

Training sources

Type	Dataset	Product	Bands	Resolution (m)	Usage
Optical	Sentinel-2	LIC	B2 (Blue), B3 (Green), B4 (Red), B8 (NIR), B11 (SWIR)	10, 20, 60	input, target
Optical, Thermal	Landsat-8, Landsat-9	LiC	B2 (Blue), B3 (Green), B4 (Red), B5 (NIR), B6 (SWIR), B8 (Panchro- matic), B10 (Thermal)	15, 30, 100	input, target
C-band SAR	Sentinel- 1A, Sentinel- 1B	GRD	VV, VH, HH, HV, angle	10	input, target
L-band SAR	ALOS PALSAR ScanSAR	Level 2.2	HH, HV, lin	25	target
Elevation	Copernicus DEM	GLO-30	DEM (elevation)	30	target
LiDAR	GEDI	L2A	Relative height metrics (rh*)	25	target
Climate	ERA5- Land	Monthly aggre- gates	total precipitation (sum, min, max), air temperature 2m (and min, max), dew- point temperature 2m (and min, max), surface pressure (and min, max)	11132	target
Gravity fields	GRACE	Monthly mass grids	equivalent liquid water thickness	11132	(@50%)
Land cover	National Land Cover Database	NLCD 2019, 2021	landcover	N/A	target (@50%)
Text	Wikipedia	geocoded articles	text embeddings	N/A	target
Text	GBIF	Research- grade obs	text embeddings (class, genus, and species)	N/A	target

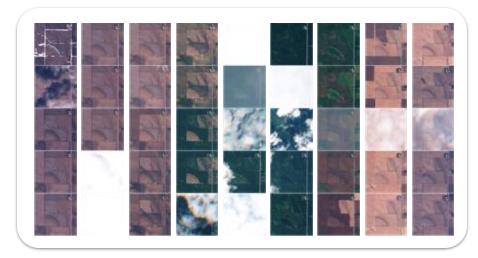


^{*} V2.1 updates: Also includes NASS CDL landcover (target), NLCD & CDL weights reduced from 50% to 25%

Spatial & temporal context

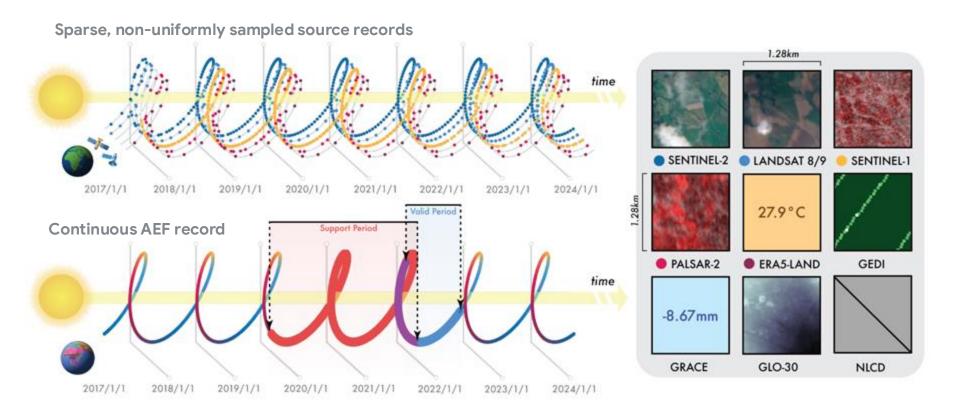
1.28 km x 1.28 km input image

Model can use any information in this window when generating embedding for target pixel



Full calendar year of imagery (per sensor)

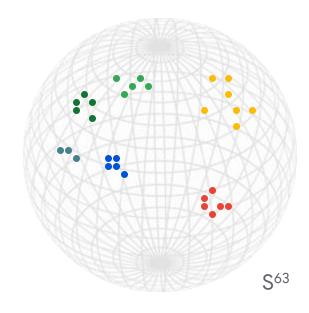
Model learns from a sequence of image frames (video) to encode a temporal trajectory



A virtual satellite that can image any place over any time

Building a better embedding...

- Reconstruction objective: Reconstruct randomly selected frames, using their corresponding metadata and timecode
- Batch uniformity objective: Encourage a uniform distribution over the training set of embeddings in a 64-dimensional unit sphere (S⁶³)
- Contrastive consistency objective: Encourage forward passes with missing inputs to create embeddings identical to forward passes without missing inputs
- Text contrastive objective: Align embeddings derived from text descriptions with embeddings derived from the video sequence.



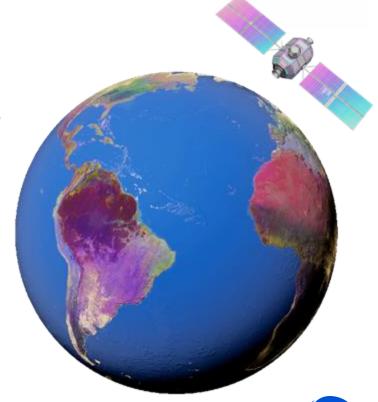
= well-structured 64dimensional unitlength embedding fields

Things we don't do...

- We don't include location as a predictor → location is more of an index than a signal
- We don't require surface reflectance or cloud masks to generate embeddings → we want to learn in a way that ignores sensor minutia and noise
- We don't require re-training → we want embedding outputs to be useful as-is
- We don't assume reconstruction is enough → we use additional constraints to help structure the feature space

AlphaEarth Foundations

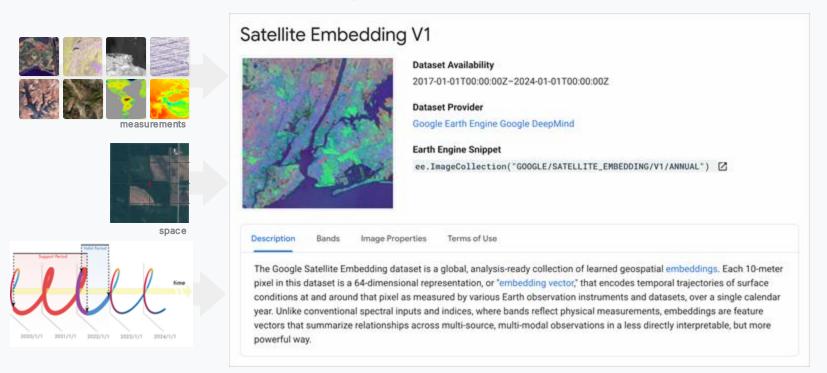
- A model designed to function as a **virtual satellite** whose images summarize Earth's surface dynamics over space and time
- Learn **meaningful patterns** across data streams and generate spatially and temporally precise embedding vectors for any place, any time
- Outputs designed for **practitioners** like an Alpowered image composite
- **Embedding images** are a foundation on which many different EO applications can be built



Read more in our preprint here: arxiv.org/abs/2507.22291

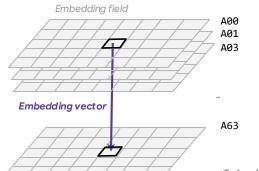
Satellite Embedding Dataset

Annual summaries generated by AlphaEarth Foundations

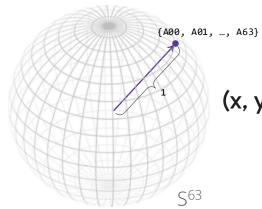


ee.ImageCollection("GOOGLE/SATELLITE_EMBEDDING/V1/ANNUAL")

Embedding fields



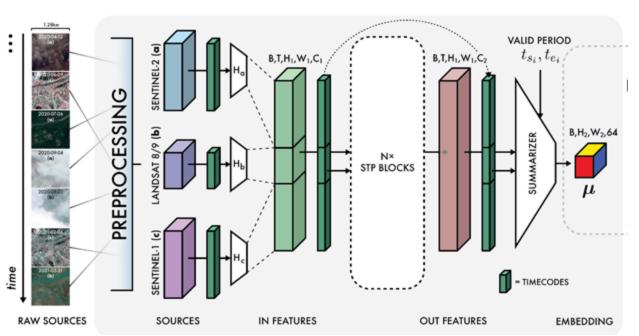
64-dimensional embedding space



(x, y, t_{start}, t_{end})

Google

Learned axes != wavelengths



x, y, t_{start}, t_{end} Position on axis 63 Position on axis 0

10 meters

Annual summary of surface condition and temporal variability for given location

Image Collection Satellite Embedding Image Collection in EE Per-pixel embeddings (10m x 10m) (256x256) scale output(scale,...) native resolution Linearly composable = pyramiding Tiled embedding fields (wall-towall terrestrial + shallow water Google coverage)

What can you do with the Satellite Embedding Dataset?

Similarity Search

(40.723, -74.000)

Instantly find other places like this

Classification

Crop type

Accurate maps with less training data

Regression

Above ground biomass

Scale biophysical measurements

Change detection

Forest clearing

Easily spot changes & track processes

What can you do with the **Satellite Embedding Dataset?**

Similarity Search

(40.723, -74.000)

Instantly find other places like this

Classification

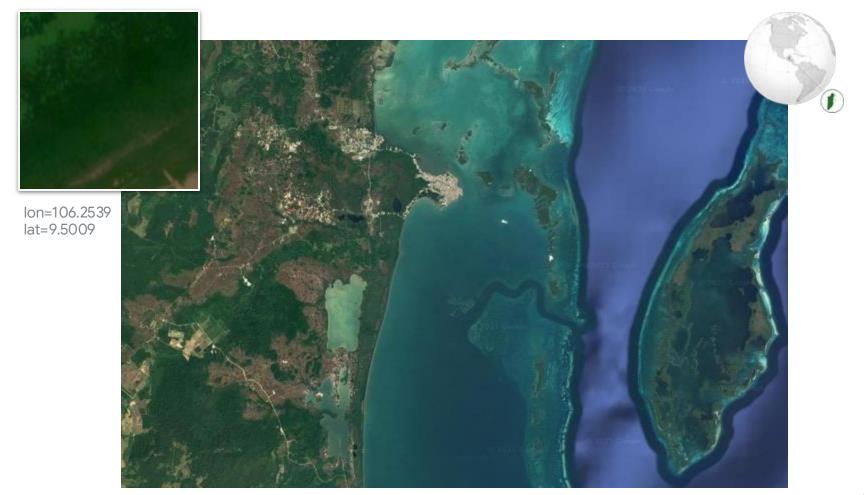


data

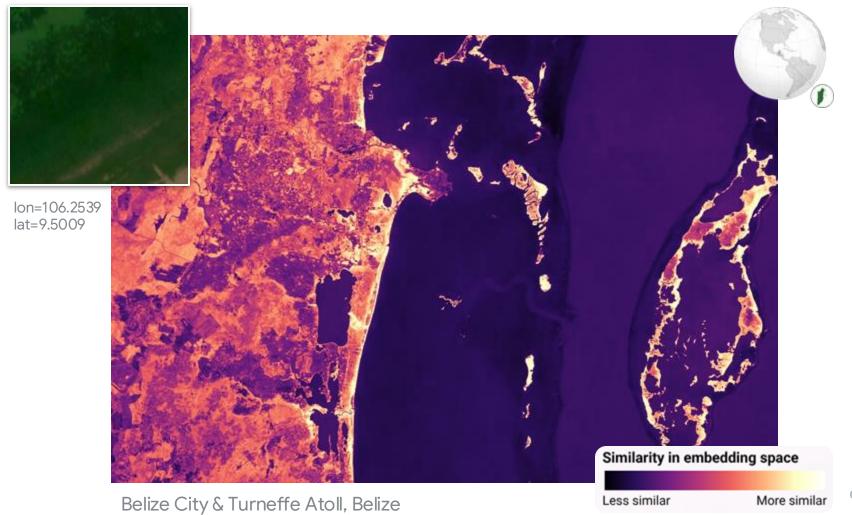
Change detection

Mekong delta, Vietnam

ilar Google



Belize City & Turneffe Atoll, Belize



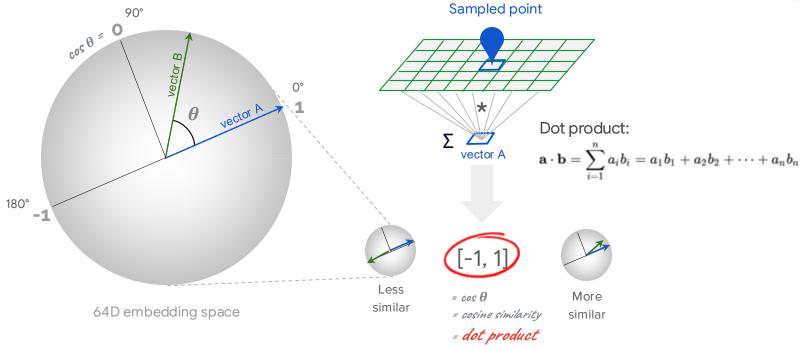
Google



Florida Everglades, United States

Google

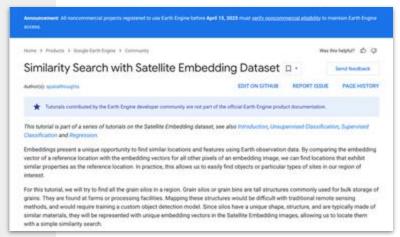
Under the hood: Dot product similarity



Under the hood: Dot product similarity

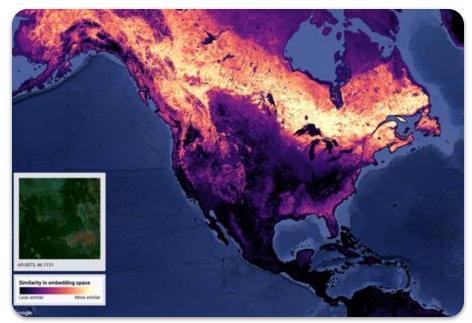

```
var point = ee.Geometry.Point([-73.98119128411304, 40.76277998772318]);
var embeddings = ee.ImageCollection('GOOGLE/SATELLITE EMBEDDING/V1/ANNUAL');
var vear = 2024;
var mosaic = embeddings
   .filterDate(year + '-01-01', (year + 1) + '-01-01')
   .mosaic():
var bandNames = mosaic.bandNames();
var similarity = ee.ImageCollection(
         mosaic.sample({region: point, scale: 10}).map(function(f) {
           return ee.Image(f.toArray(bandNames))
               .arrayFlatten(ee.List([bandNames]))
               .multiply(mosaic)
               .reduce('sum');
         })).first();
```

Check out our new tutorial for more!



Summary: Similarity Search

- Compare embedding vector for a sampled location and every other location @ 10-meter resolution
- Generate a map of similarity scores ondemand
- Sample multiple points to define semantics
- Resample (average) embeddings to aggregate to patch scales (using any rules you like!)



Similar to protected forest in Maine, USA

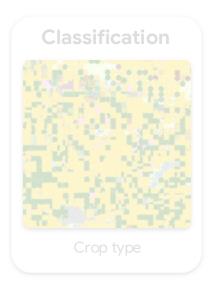
— Try it yourself!

goo.gle/satellite-embedding-similarity-demo

What can you do with the Satellite Embedding Dataset?

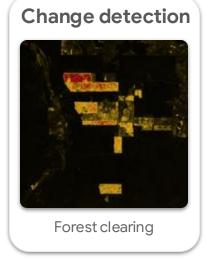


Instantly find other places like this



Accurate maps with less training data

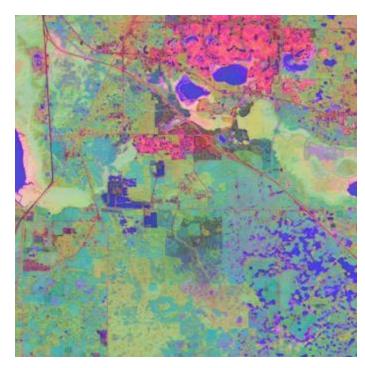
Scale biophysica measurements



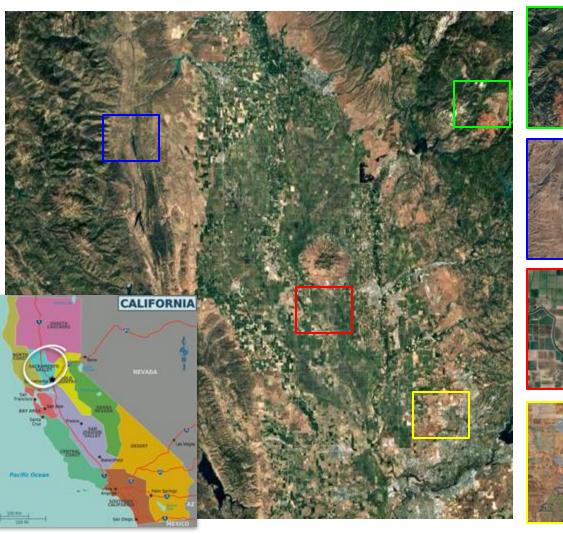
Easily spot changes & track processes

Similarity in time = stability

- Compare embedding vector for a sampled location with vector for that location for a different year
- Use similarity as a measure of relative stability/instability
- Consistency objective incentivizes overall stability, however individual axes may (jointly) encode responses in different properties
- Change can mean "surface change" or it could be "environmental change", i.e., wet year versus dry year



Time series of embeddings showing new construction in Florida, USA

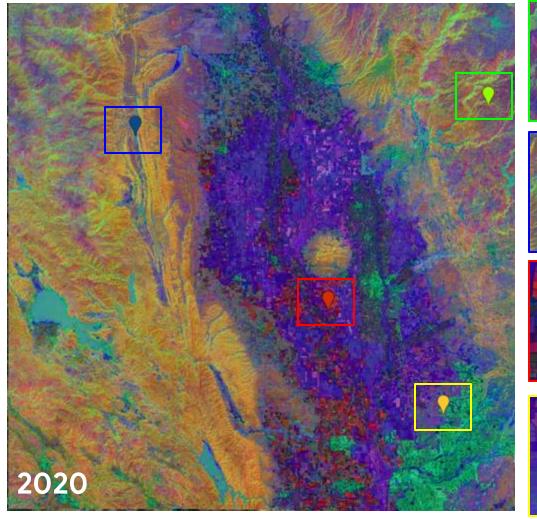


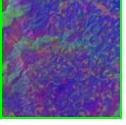
Forests fires & Timber

Water resources

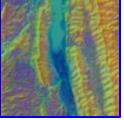
Agricultural monitoring

Suburban development

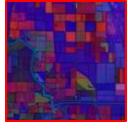




Forests fires & Timber

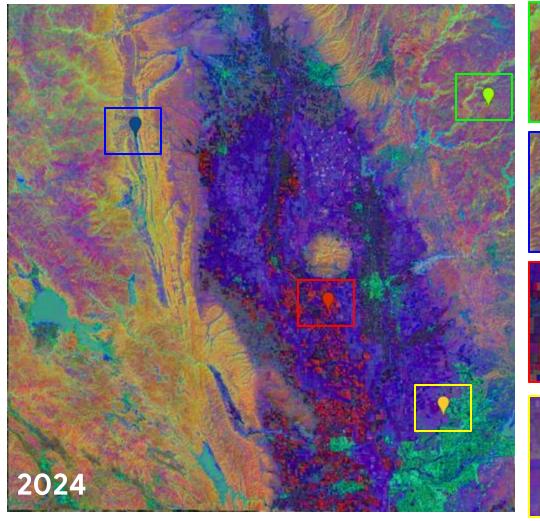


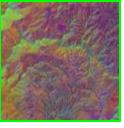
Water resources



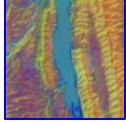
Agricultural monitoring

Suburban development





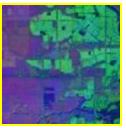
Forests fires & Timber



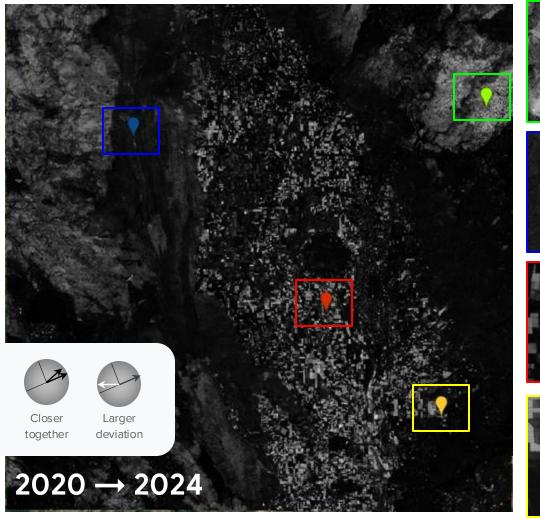
Water resources

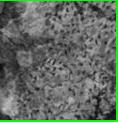


Agricultural monitoring



Suburban development





Forests fires & Timber

Water resources

Agricultural monitoring

Suburban development

Under the hood: Dot product similarity for identifying change in embedding space


```
// Load collection.
var dataset = ee.ImageCollection('GOOGLE/SATELLITE_EMBEDDING/V1/ANNUAL');
// Point of interest.
var point = ee.Geometry.Point(-121.8036, 39.0372);
// Get embedding images for two years.
var image1 = dataset
      .filterDate('2023-01-01', '2024-01-01')
      .filterBounds(point)
      .first():
var image2 = dataset
      .filterDate('2024-01-01', '2025-01-01')
      .filterBounds(point)
      .first();
// Visualize three axes of the embedding space as an RGB.
var visParams = \{min: -0.3, max: 0.3, bands: ['A01', 'A16', 'A09']\};
Map.addLayer(image1, visParams, '2023 embeddings');
Map.addLayer(image2, visParams, '2024 embeddings');
// Calculate dot product as a measure of similarity between embedding vectors.
// Note for vectors with a magnitude of 1, this simplifies to the cosine of the
// angle between embedding vectors.
var dotProd = image1.multiply(image2).reduce(ee.Reducer.sum());
// Add dot product to the map.
Map.addLayer(dotProd, {min: 0, max: 1, palette: ['white', 'black']},
'Similarity between years (brighter = less similar)'
);
```

https://code.earthengine.google.com/ad76b608c58da436e3b902f468b6d168

Summary: Change detection

- Relatively stable overall
- Expect phenological and climatic variability
- Summaries of numerical representations still require interpreted meanings → semantics matter!

