

OPERA

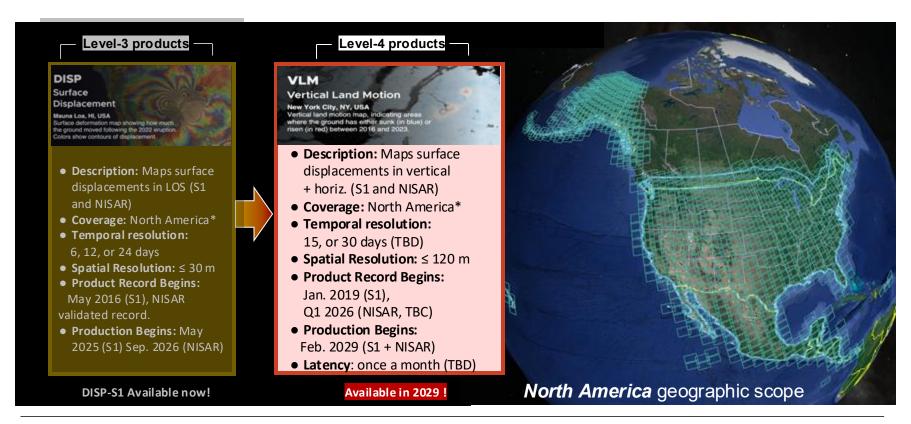
Observational Products for End-Users from Remote Sensing Analysis

Fifth OPERA Workshop

September 11, 2025

Introduction to New Products: Vertical Land Motion

Introduction to New Products: Vertical Land Motion (VLM) VLM-S1, VLM-NISAR


Marin Govorcin

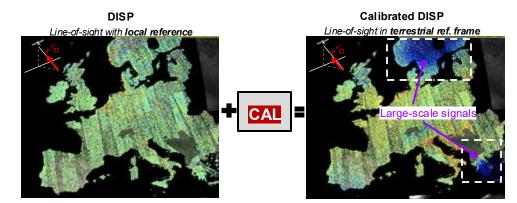
Jet Propulsion Laboratory, California Institute of Technology

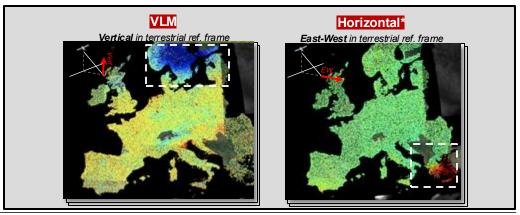
© 2025. California Institute of Technology. Government sponsorship acknowledged. This workshop is open to US and non-US participants. The material presented has been cleared for unlimited release. No ITAR information is to be presented.

VLM Workflow: 2 stages

1. <u>Calibration for Displacement [CAL]</u> (intermediate product)

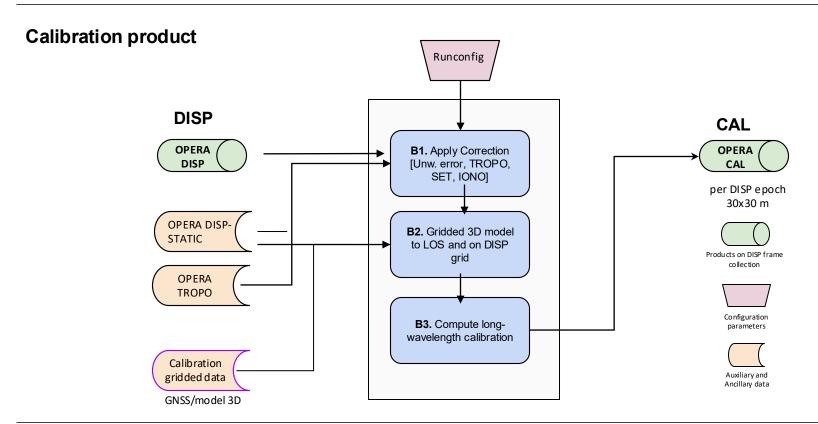
Re-referencing OPERA DISP to a geodetic reference frame using long-wavelength corrections (e.g., GNSS, plate motion, GIA).

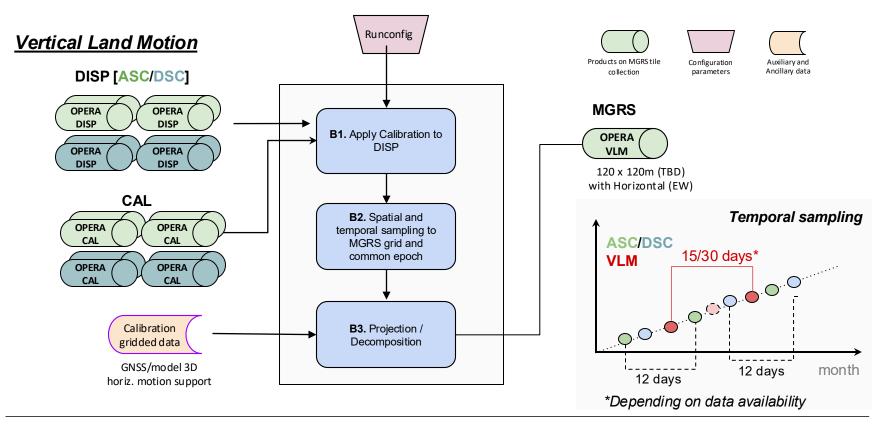

- Frame-based (30 × 30 m posting)
- In collaboration with University of Reno / Nevada Geodetic Laboratory
- Planned release: Feb 2028


2. Vertical Land Motion time-series

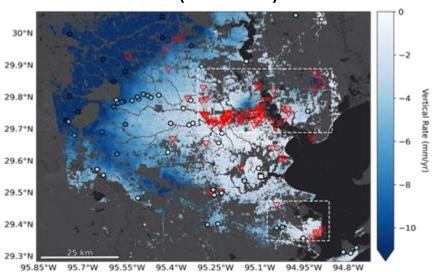
Calibrated OPERA DISP decomposed into vertical and horizontal (where applicable) time series.

- MGRS tile-based [TBD], 120 × 120 m posting [TBD]
- Combines ascending and descending tracks (*where available)
- Planned release: Feb 2029


NOTE: linear rates are not included

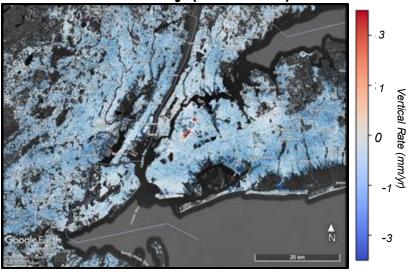

Algorithm Workflow - same for SI and NISAR

Algorithm Workflow - same for S1 and NISAR


© 2025. California Institute of Technology, Government sponsorship acknowledged.

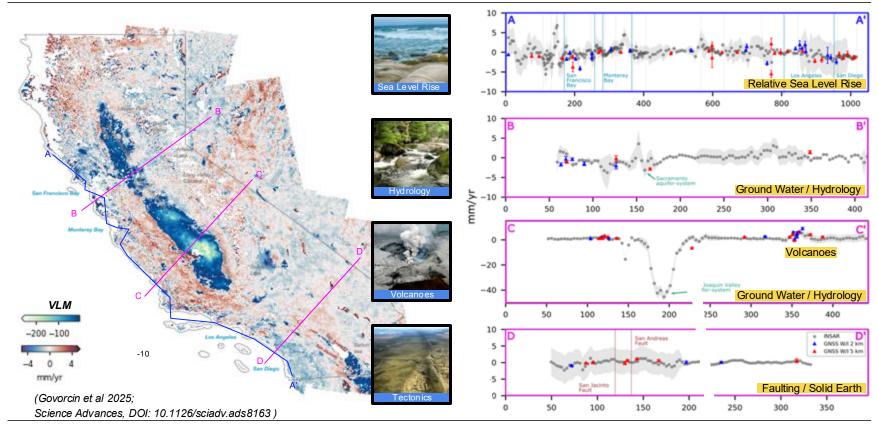
This workshop is open to US and non-US participants. The material presented has been cleared for unlimited release. No ITAR information is to be presented.

VLM prototypes


Houston (2016-2024)

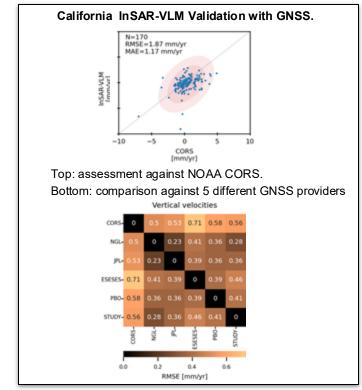
VLM S1 prototype to assess critical infrastructure, e.g. above ground storage tanks, for exposure to subsidence and flooding hazards.

(Buzzanga, B., et al 2025; Scientific Reports, https://doi.org/10.1038/s41598-025-01970-8


New York City (2016-2024)

VLM S1 prototype to access coastal subsidence and exposure to relative sea level rise.

Product Applications


© 2025. California Institute of Technology. Government sponsorship acknowledged.

This workshop is open to US and non-US participants. The material presented has been cleared for unlimited release. No ITAR information is to be presented.

VLM Validation

- Validation will be assessed by comparing VLM timesseries and long-term linear rates with GNSS solutions from different providers
- Public GNSS solutions from:
 - NOAA-Continuously Operating Reference Stations (CORS) - vertical datum
 - NASA MEaSUREs: Extended Solid Earth Science ESDR System
 - Nevada Geodetic Laboratory
- Validation sites will be selected to match those used for OPERA DISP (TBD).

(Govorcin et al 2025; Science Advances, DOI:

Looking Forward

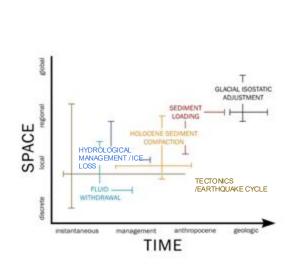
Operational OPERA VLM products are expected starting in Feb 2028 [CAL] and Feb 2029 [VLM]

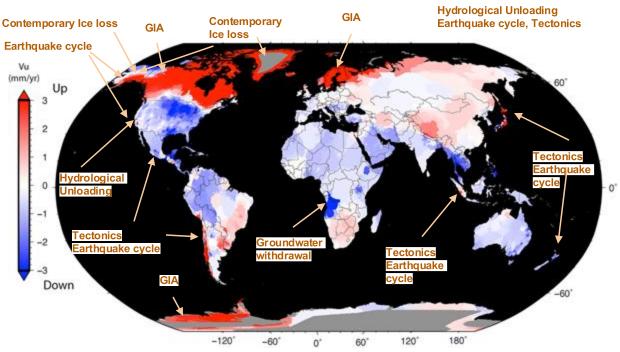
Summary

- The OPERA project will generate VLM products from Sentinel-1/NISAR on a North America geographical scope
- The OPERA VLM delivery consists of 2 stages: Calibration and Vertical Land Motion
- The OPERA team will use GNSS/model gridded data (UNR) as input to Calibration
- The OPERA team will use Calibrated DISP as input to Vertical Land Motion time series
 - Sentinel-1: 10 yr of data, (2019-2029), NISAR: ~4/5 yr of data (2026-2030)
- We expect OPERA VLM products suitable for a wide range of applications

Next Steps

OPERA team is currently developing all software required for CAL and VLM S1/NISAR




BACKUP

What is Vertical Land Motion (VLM): Subsidence/Uplift

VLM is driven by multiple processes acting at different spatial-temporal scales

Fitzpatrick, C., Jankowski, K.L., & Reed, D. (2020). 2023 Coastal Master Plan: Determining Subsidence Rates for Use in Predictive Modeling. Version I. (p. 70). Baton Rouge, Louisiana: Coastal Protection and Restoration Authority.

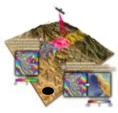
 $Hammond\,et\,al.\,(2021):\,GPS\,Imaging\,of\,Global\,Vertical\,Land\,Motion\,for\,Studies\,\,of\,Sea\,Level\,Rise,\\ \frac{https://doi.org/10.1029/2021JB022355}{https://doi.org/10.1029/2021JB022355}$

Observing VLM Using Remote Sensing

GNSS:

- Very accurate in time
- + Measurement with respect to a geodetic reference
- Not dense in space

Very good to capture the long spatial processes.



Credit: Earthscope Consortium

Interferometric Synthetic Aperture Radar (InSAR):

- Accurate in time when densely sampled
- + Dense in space when signal is maintained
- Measurement with respect to a relative location and time

Very good at capturing the short spatial scales


Credit: NASA Earth Observatory

This product:

VLM combining GNSS+INSAR

- + Leverages strengths of GNSS and InSAR.
- + Measurement with respect to a geodetic reference frame

Very good at capturing the short and long spatial scales

OPERA VLM prototype (GNSS +InSAR)
(Govorcin et al 2025; Science Advances, DOI: 10.1126/sciadv.ads8163

OPERA VLM Prototype Integrated in CA State SLR Report

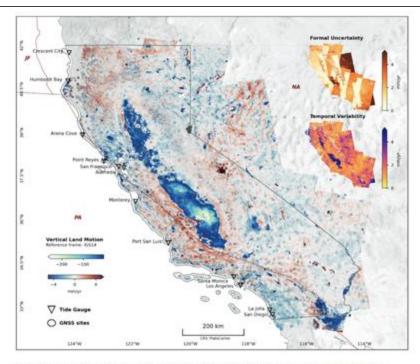
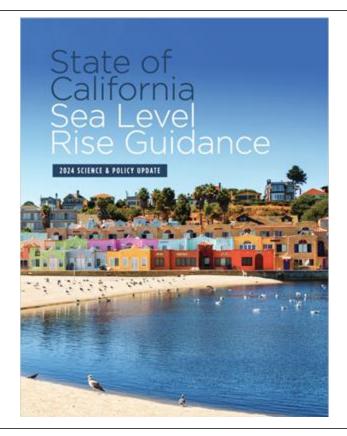
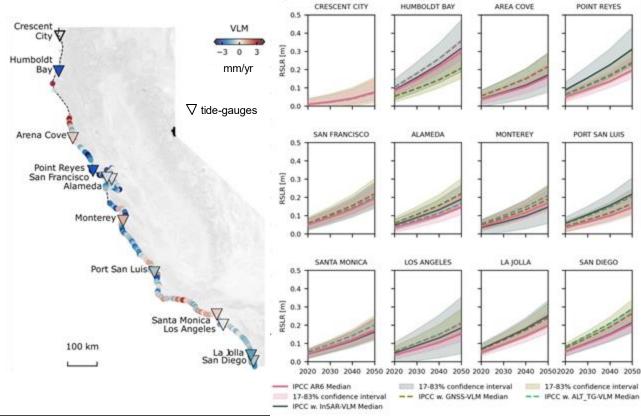
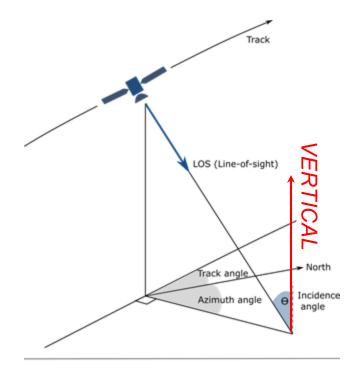



FIGURE A3.1. Map of vertical land motion rates (mm/year) from Sentinel-I over the period from 2016-2023 using InSAR analysis for California. Blue indicates subsidence while red indicates areas of uplift. Uncertainty on the rates and variability in the trends over the record are shown in the insets.


Govor cin M., Bekaert, D., Hamlington B., Sangha, S. Sweet, W. (2024.) Variable Vertical Land Motion for Sea Level Rise Projections (submitted)

OPERA VLM for sea level projections, example CA

- Direct **VLM** observations at tide-gauges (TG) that don't have collocated **GNSS**
- **OPERA VLM** can be used for sea level projections, both regional (at TG) and local
- **OPERA-VLM** will capture local VLM variations, missing in current projection frameworks (e.g. IPCC), yet important for effective coastal adaptation strategies


The VLM product with **North America** geographic scope includes the following:

- Calibration product for Displacement

- Sentinel-1 Calibration product for Displacement
- NISAR Calibration product for Displacement

- <u>Vertical Land Motion time-series</u>

- Sentinel-1 Vertical Land Motion time-series
- NISAR Vertical Land Motion time-series

The VLM product with **North America** geographic scope will consists of 2 stages and include:

Calibration product for Displacement

- Sentinel-1 Calibration product for Displacement
- NISAR Calibration product for Displacement

- Vertical Land Motion time-series

- Sentinel-1 Vertical Land Motion time-series
- NISAR Vertical Land Motion time-series

DISP Surface Displacement • Description: Maps surface displacements in LOS (S1 and NISAR) Coverage: North America* • Temporal resolution: 6, 12, or 24 days • **Spatial Resolution:** ≤ 30 m • Product Record Begins: Apr. 2014 (S1), NISAR validated record. • Production Begins: Dec. 2024 (S1) Sep. 2026 (NISAR)

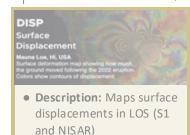
Level-3 products

Level-4 products

- Description: Maps surface displacements in vertical + horiz. (S1 and NISAR)
- Coverage: North America*
- Temporal resolution:
 15, or 30 days (TBD)
- Spatial Resolution: ≤ 120 m
- Product Record Begins: Jan. 2019 (S1), NISAR (2026)
- Production Begins: Apr. 2028 (S1 + NISAR)
- **Dynamic update**: once a month (TBD)

Available now!

Available in 2028


Level-2 products —

CSLC CSLC Coregistered Single-Look Complex San Gabriel Mountains, CA, USA CSLC safer Parently shape Coccore a sent-stancial region

- Description: Geocoded and coreg. SLC (S1, NISAR).
 Basis for all the DISP products.
- Coverage: North America*
- Spatial Resolution: ≤ 10 m
- Product Record Begins: Apr. 2014 (S1) and TBD (NISAR)
- Production Begins:
 Oct. 2023 (S1), TBD (NISAR)

Available now!

Level-3 products -

- Coverage: North America*
- Temporal resolution: 6, 12, or 24 days
- Spatial Resolution: ≤ 30 m
- Product Record Begins:
 Apr. 2014 (S1), NISAR
 validated record
- Production Begins: Dec. 2024 (S1) Sep. 2026 (NISAR)

Available no w!

Level-4 products

- Description: Maps surface displacements in vertical + horiz. (S1 and NISAR)
- Coverage: North America*
- Temporal resolution:
 15, or 30 days (TBD)
- Spatial Resolution: ≤ 120 m
- Product Record Begins:
 Jan. 2019 (S1), NISAR (2026)
- Production Begins: Apr.
 2028 (S1 + NISAR)

Available in 2028