



# OPERA

**Observational Products  
for End-Users from  
Remote Sensing Analysis**

Product Specification Document for  
Surface Displacement Static Layers  
from Sentinel-1

## **Observational Products for End-users from Remote sensing Analysis (OPERA) project**

### **OPERA Level-3 Surface Displacement Static Layers from Sentinel-1 (DISP-S1-STATIC) Product Specification**

Version 1.0.0

JPL D-108762, Rev. A

March 20, 2025

Paper copies of this document may not be current and should not be relied on for official purposes.

## Key Authors

*Document version 1.0*  
Staniewicz, Scott

*Jet Propulsion Laboratory, California Institute of Technology*

## Past Author

*Document version up to 1.0*  
Bekaert, David

*Jet Propulsion Laboratory, California Institute of Technology*



Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004)

This document has been reviewed and determined not to contain export controlled technical data.

© 2025. California Institute of Technology. Government sponsorship acknowledged.

## SIGNATURE PAGE

Prepared by:

---

Scott Staniewicz  
OPERA Algorithm Development Team

Date

Approved by:

---

Luca Cinquini  
OPERA Project Manager

Date

---

Steven Chan  
OPERA Project Scientist

Date

---

Steven Lewis  
OPERA Project System Engineer

Date

Concurred by:

---

Luca Cinquini  
OPERA Science System Data Manager

Date

## DOCUMENT CHANGE LOG

| Revision | Cover Date     | Sections Changed | ECR # | Reason, ECR Title, LRS #* |
|----------|----------------|------------------|-------|---------------------------|
| V1.0     | March 21, 2025 | All              | N/A   | New document. LRR XXX     |
|          |                |                  |       |                           |
|          |                |                  |       |                           |
|          |                |                  |       |                           |
|          |                |                  |       |                           |
|          |                |                  |       |                           |

\*Include the JPL Limited Release System (LRS) clearance number for each revision to be shared with foreign partners.

This document has been reviewed and determined not to contain export controlled technical data.

© 2025. California Institute of Technology. Government sponsorship acknowledged.

## TABLE OF CONTENTS

|                                          |    |
|------------------------------------------|----|
| [AD1] List of TBC Items                  | 7  |
| [AD2] List of TBD Items                  | 7  |
| 1 Introduction                           | 8  |
| 1.1 Purpose                              | 8  |
| 1.2 Document Organization                | 8  |
| 1.3 Applicable and Reference Documents   | 8  |
| 1.4 Applicable Software                  | 9  |
| 2 Product Overview                       | 9  |
| 2.1 PRODUCT BACKGROUND                   | 9  |
| 2.2 DISP-S1-STATIC Product Overview      | 10 |
| 3 Product Organization                   | 11 |
| 3.1 File Naming Convention               | 11 |
| 3.2 Spatial Organization                 | 11 |
| 3.3 Spatial Sampling and Resolution      | 11 |
| 4 Product specification                  | 12 |
| 4.1 DISP-S1-STATIC Layers                | 12 |
| 4.1.1 Line-of-sight unit vector          | 12 |
| 4.1.2 Digital Elevation Model            | 12 |
| 4.1.3 Layover shadow mask                | 12 |
| 4.2 GeoTIFF metadata                     | 13 |
| 4.2.1 Product Identification             | 13 |
| 4.2.2 Input Datasets                     | 15 |
| 4.2.3 Processing Information             | 15 |
| [AD3] Appendix A: Geocoded Product Grids | 17 |
| a. Map Projections                       | 17 |
| b. Grid Alignment                        | 17 |
| [AD4] Appendix B: Acronyms               | 18 |

## [AD1] LIST OF TBC ITEMS

**These items are to be completed when the document is ready to enter configuration control.**

| Page | Section |
|------|---------|
|      |         |
|      |         |
|      |         |

## [AD2] LIST OF TBD ITEMS

**These items are to be completed when the document is ready to enter configuration control.**

| Page | Section |
|------|---------|
|      |         |
|      |         |
|      |         |

## 1 INTRODUCTION

### 1.1 Purpose

This document provides a description of the Observational Products for End-users from Remote sensing Analysis (OPERA) Level-3 Surface Displacement static layers product from Sentinel-1 (DISP-S1) to be generated by the OPERA Science Data System (SDS) and provided to the Alaska Satellite Facility (ASF) NASA's Distributed Active Archive Center (DAAC). Hereafter, this data product is referenced by the short name DISP-S1-STATIC.

### 1.2 Document Organization

Section 2 provides an overview of the product including its purpose.

Section 3 provides the structure of the product, including tile definition, file organization, spatial and temporal resolutions, and spatial organization of the product content.

Section 4 provides a qualitative description of the data layers and the metadata provided in the product.

Section 5 provides a detailed description of the individual fields within the DISP-S1-STATIC product e.g., their units, size, and coordinates.

Appendix A provides further details on the geographical grid and projection systems used to generate the product.

### 1.3 Applicable and Reference Documents

Applicable documents levy requirements on areas addressed in this document. Reference documents are cited to provide additional information to readers. In cases of conflict between the applicable documents and this document, the OPERA Project shall review the conflict to find the most effective resolution.

#### Applicable Documents

- NASA SNWG Cycle 2 – OPERA Program Level (Level 1) Requirements Document, Oct. 15, 2021.
- OPERA Level 2 Requirements JPL D-107391, Rev. B, Nov. 08, 2022.
- OPERA Product Description, JPL D-107389, Rev. A, Nov. 30, 2022
- OPERA CSLC-S1 Product Description, JPL D-108278, Rev. A, Sept. 11, 2023.
- OPERA DISP-S1 Product Specification, JPL D-108772, Feb. 28, 2025.

#### Reference Documents

This document has been reviewed and determined not to contain export controlled technical data.

- [RD1] “TIFF/IT for Image Technology.” *The National Digital Information Infrastructure and Preservation Program at the Library of Congress*, 3 Oct. 2006, [www.loc.gov/preservation/digital/formats/fdd/fdd000072.shtml](http://www.loc.gov/preservation/digital/formats/fdd/fdd000072.shtml). Accessed 21 June 2022.
- [RD2] Cloud Optimized GeoTIFF: An imagery format for cloud-native geospatial processing. [www.cogeo.org/](http://www.cogeo.org/). Accessed 24 September 2023.

The latest official versions of this document should be obtained from <https://www.jpl.nasa.gov/go/opera/about-opera>. This document is a ‘working version’ with the primary purpose of describing the OPERA DISP-S1-STATIC generated by the OPERA Algorithm Development Team’s (ADT) Final release delivery Release 6 (R6) to the OPERA SDS.

## 1.4 Applicable Software

The software generating the Final version of the DISP-S1 and DISP-S1-STATIC products is available on GitHub at [disp-s1](https://github.com/OPERA-SDS/opera-disp-s1). The DISP-S1-STATIC products generated by the Final version of the SAS conform to the product specifications reported in this document.

## 2 PRODUCT OVERVIEW

### 2.1 Product Background

The OPERA Level 3 OPERA Level 3 Land-Surface Displacement Static Layers from Sentinel-1 data (DISP-S1-STATIC) serves as an ancillary product to the OPERA Level 3 Single Look Surface Displacement from Sentinel-1 product (DISP-S1). The DISP-S1-STATIC product is distributed separately from the DISP-S1 products, and it is only produced once (or a limited amount of times) for DISP-S1 products characterized by the same frame identification string i.e., for all the S1-A/B bursts covering the same geographical area on the ground.

Figure 2-1 shows the processing workflow used to generate a DISP-S1-STATIC product which includes the functionality to generate the CSLC-S1-STATIC product.

The spatial coverage of DISP-S1 products is over North America which includes USA and US Territories within 200 km from the US border, Canada, and all mainland countries from the southern US border down to and including Panama.

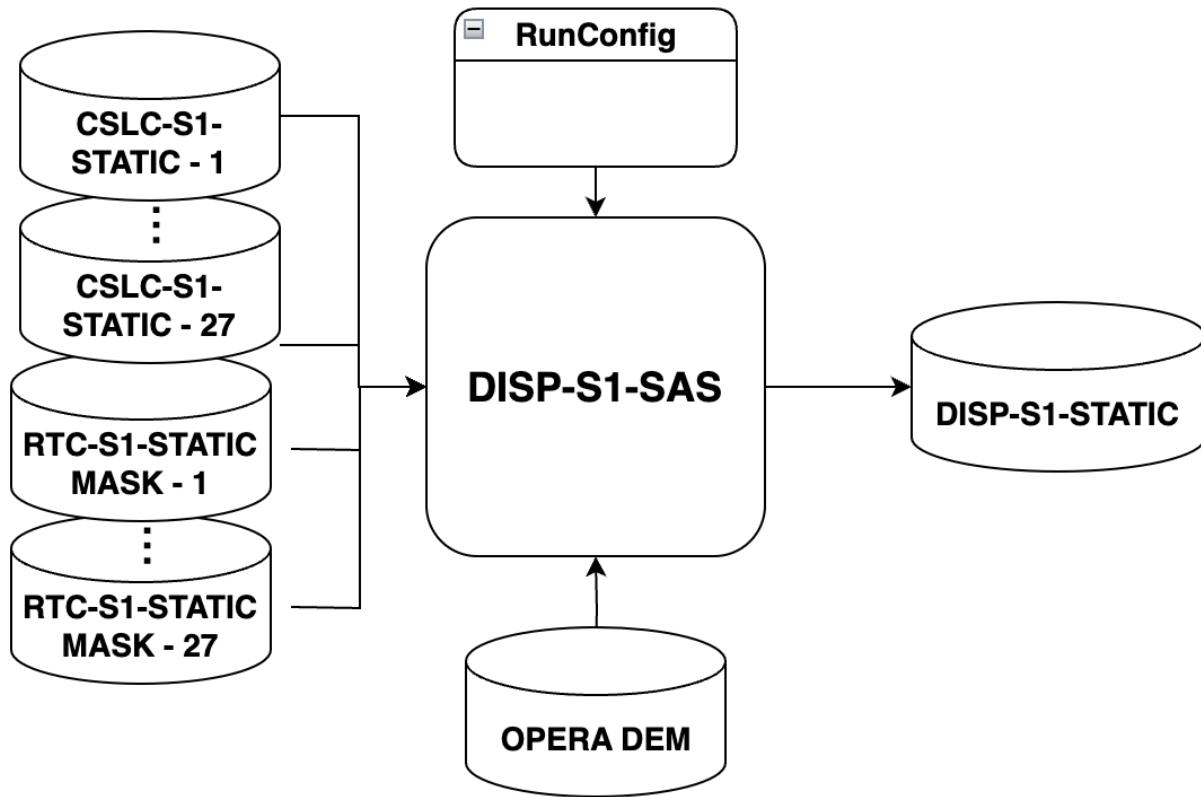



Figure 2-1 OPERA CSLC-S1 workflow diagram.

| Input product      | Description                                                                                | Granule Size |
|--------------------|--------------------------------------------------------------------------------------------|--------------|
| CSLC-S1-STATIC     | The input level 2 OPERA CSLC S1 Static layers files for the 27 bursts in the DISP-S1 frame | Variable     |
| RTC-S1-STATIC MASK | The input level 2 OPERA RTC S1 Static layers files for the 27 bursts in the DISP-S1 frame  | Variable     |
| Copernicus DEM     | GLO-30 Copernicus Digital Elevation Model                                                  | Variable     |

Table 2-1 Input products for DISP-S1-STATIC production.

## 2.2 DISP-S1-STATIC Product Overview

The DISP-S1-STATIC product is a Level 3 product that contains static radar geometry layers associated with the DISP-S1 product. These layers are generated over a pre-defined UTM map grid with a 30-meter spacing (Table 2-2).

| Product        | Pixel spacing in Northing (m) | Pixel spacing in Easting (m) |
|----------------|-------------------------------|------------------------------|
| DISP-S1-STATIC | 30                            | 30                           |

This document has been reviewed and determined not to contain export controlled technical data.

Table 2-2 Pixel spacing of the DISP-S1-STATIC product.

### 3 PRODUCT ORGANIZATION

The DISP-S1-STATIC product is distributed as cloud-optimized GeoTIFF files (COGs) containing the layers line of sight east, north, vertical unit vectors, the digital elevation model (DEM), and the layover shadow mask.

#### 3.1 File Naming Convention

OPERA DISP-S1-STATIC granule names are designed to ensure unique and descriptive identification for the OPERA DISP-S1-STATIC products. The following file-naming convention is used:

OPERA\_L3\_DISP-S1-STATIC\_  
[FrameID]\_[ValidityStartDate]\_[Sensor]\_[ProductVersion]\_[LayerName].tif

- *FrameID*: Unique frame identification number as a 5-digit string in the format FXXXX
- *ValidityStartDate*: The validity start date of the DISP-S1-STATIC product (format: YYYYMMDD)
- *Sensor*: The input product sensor, e.g., “S1A” representing Sentinel-1A
- *ProductVersion*: OPERA DISP-S1-STATIC product version number with four characters, including the letter “v” and two digits indicating the major and minor versions, which are delimited by a period
- *LayerName*: Name of the DISP-S1-STATIC product layer (e.g., “*layover\_shadow\_mask*”)

Example:

OPERA\_L3\_DISP-S1-STATIC\_F11115\_20140403\_S1A\_v1.0\_line\_of\_sight\_enu.tif  
OPERA\_L3\_DISP-S1-STATIC\_F11115\_20140403\_S1A\_v1.0\_dem.tif  
OPERA\_L3\_DISP-S1-STATIC\_F11115\_20140403\_S1A\_v1.0\_layover\_shadow\_mask.tif

#### 3.2 Spatial Organization

DISP-S1-STATIC products are distributed onto a uniformly spaced, north-south, and west-east aligned UTM/WGS84 grid with a 30 meter pixel spacing.

#### 3.3 Spatial Sampling and Resolution

Some salient features of the output grid of DISP-S1-STATIC products:

This document has been reviewed and determined not to contain export controlled technical data.

1. The DISP-S1-STATIC product shares the same 30 meter geographical grid of all the DISP-S1 products characterized by the same frame identification string.
2. The corner coordinates of the geographical grid are multiples of the product pixel spacings in the Easting and Northing directions.

## 4 PRODUCT SPECIFICATION

OPERA DISP-S1-STATIC are distributed as cloud optimized GeoTIFFs (COGs) [RD2]. The GeoTIFF is a format to store georeferenced raster images and is widely used by remote-sensing communities. The GeoTIFF format is defined in the public domain as Tagged Image File Format (TIFF) [RD1] It enables the storage of compressed images with associated metadata that can be easily read by Geographic Information System (GIS) software, including the open Geospatial Data Abstraction Library (GDAL) and Quantum GIS (QGIS).

To save storage space, each GeoTIFF file is compressed using the DEFLATE algorithm, and the line-of-sight unit vectors have been rounded to use only 16 bits of the Float32 data.

### 4.1 DISP-S1-STATIC Layers

DISP-S1-STATIC layers are provided in the same map grid as the DISP-S1 product imagery. Static layers include the line-of-sight (LOS) unit vectors, the digital elevation model used during CSLC processing, and the layover shadow mask of all bursts contained in the DISP-S1 frame.

#### 4.1.1 Line-of-sight unit vector

The line of sight (LOS) unit vector is a 3-band raster containing the east, north, and vertical component of the unit vector. The convention is that the vector points from the ground pixel to the satellite (i.e. the vertical component in band 3 is positive).

#### 4.1.2 Digital Elevation Model

The DEM raster is the OPERA DEM v1.1, derived from the Copernicus DEM, resampled to the same UTM grid as the DISP-S1 product.

#### 4.1.3 Layover shadow mask

The layover shadow mask layer contains the valid/invalid, layover, and shadow classification computed over the reference DISP-S1-STATIC. The product stitches together the RTC-S1-STATIC mask imagery, which is computed on the same 30 meter grid as the DISP-S1 frames. The mask layer contains 5 classes represented by an unsigned byte data type:

- Class 0: Valid sample not affected by layover or shadow

This document has been reviewed and determined not to contain export controlled technical data.

- Class 1: Valid sample affected by shadow
- Class 2 - Valid sample affected by layover
- Class 3: Valid sample affected by layover and shadow
- Class 255: Invalid sample (fill value)

## 4.2 GeoTIFF metadata

All DISP-S1-STATIC product layers (GeoTIFF files) are saved with the same metadata, divided into: 1) Product Identification, 2) Input Datasets, and 3) DISP-S1-STATIC Processing Information.

### 4.2.1 Product Identification

Table 4-1 lists the product identification fields of the GeoTIFF metadata. The attribute PRODUCT\_VERSION informs the version of the DISP-S1-STATIC product (structure and metadata), whereas the attribute SOFTWARE\_VERSION describes the version of the software that generated the DISP-S1-STATIC product.

Table 4-1. GeoTIFF metadata: product identification.

| Attribute             | Description                                                                                                        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------|
| LAYER_NAME            | Product layer name                                                                                                 |
| LAYER_DESCRIPTION     | Product layer description                                                                                          |
| ABSOLUTE_ORBIT_NUMBER | Absolute orbit number                                                                                              |
| TRACK_NUMBER          | Track number                                                                                                       |
| PLATFORM              | Name of the sensor platform (e.g., "Sentinel-1A")                                                                  |
| INSTRUMENT_NAME       | Name of the instrument used to collect the remote sensing data provided in this product (e.g., "Sentinel-1A CSAR") |
| PRODUCT_TYPE          | The product type: "DISP-S1-STATIC"                                                                                 |
| PROJECT               | The project name: "OPERA"                                                                                          |

This document has been reviewed and determined not to contain export controlled technical data.

© 2025. California Institute of Technology. Government sponsorship acknowledged.

|                                              |                                                                                         |
|----------------------------------------------|-----------------------------------------------------------------------------------------|
| INSTITUTION                                  | Institution that created this product: "NASA JPL"                                       |
| CONTACT_INFORMATION                          | Contact information for producer of the product: "opera-sds@jpl.nasa.gov"               |
| PRODUCT_VERSION                              | The product version (same as in the product filename): "1.0"                            |
| PRODUCT_SPECIFICATION_VERSION                | Product specification version which represents the schema of this product: "1.0"        |
| ACQUISITION_MODE                             | Acquisition mode: "IW"                                                                  |
| LOOK_DIRECTION                               | Look direction: "right"                                                                 |
| ORBIT_PASS_DIRECTION                         | Orbit direction can be ascending or descending                                          |
| PROCESSING_DATETIME                          | RTC-S1 product processing date. Format: YYYY-MM-DDTHH:MM:SSZ.                           |
| RADAR_BAND                                   | Acquired frequency band: "C"                                                            |
| CEOS_ANALYSIS_READY_DATA_DOCUMENT_IDENTIFIER | CEOS Analysis Ready Data (CARD) document identifier                                     |
| PRODUCT_DATA_ACCESS                          | Location from where this product can be retrieved (URL or DOI)                          |
| BOUNDING_BOX                                 | Bounding box of the product, in order of xmin, ymin, xmax, ymax                         |
| BOUNDING_BOX_EPSG_CODE                       | EPSG code used to represent BOUNDING_BOX coordinates                                    |
| BOUNDING_BOX_PIXEL_COORDINATE_CONVENTION     | Pixel coordinate convention used to represent BOUNDING_BOX coordinates: "edges/corners" |
| FRAME_ID                                     | Frame identification (Frame ID)                                                         |

This document has been reviewed and determined not to contain export controlled technical data.

© 2025. California Institute of Technology. Government sponsorship acknowledged.

|                         |                                                                        |
|-------------------------|------------------------------------------------------------------------|
| ZERO_DOPPLER_START_TIME | Azimuth start time of the product in the format YYYY-MM-DDThh:mm:ss.sZ |
| ZERO_DOPPLER_END_TIME   | Azimuth stop time of the product in the format YYYY-MM-DDThh:mm:ss.sZ  |

## 4.2.2 Input Datasets

Table 4-2 describes the metadata fields that list the input datasets used to generate the DISP-S1-STATIC product.

Table 4-2. GeoTIFF metadata: input datasets.

| Attribute                     | Description                        |
|-------------------------------|------------------------------------|
| INPUT_L2_CSLC_STATIC_GRANULES | List of input L1 SLC products used |
| INPUT_DEM_SOURCE              | Description of the input DEM       |

## 4.2.3 Processing Information

Table 4-3 lists processing and other product parameters associated with the DISP-S1-STATIC product.

Table 4-3. GeoTIFF metadata: DISP-S1-STATIC processing parameters.

| Attribute        | Description                                                                             |
|------------------|-----------------------------------------------------------------------------------------|
| SOFTWARE_VERSION | The algorithm software version used to generate the DISP-S1-STATIC product.             |
| DOLPHIN_VERSION  | Version of the Dolphin framework used for processing                                    |
| AREA_OR_POINT    | Indicates that pixel values are assumed to represent an area rather than points: "Area" |

This document has been reviewed and determined not to contain export controlled technical data.

© 2025. California Institute of Technology. Government sponsorship acknowledged.



## [AD3] APPENDIX A: GEOCODED PRODUCT GRIDS

OPERA DISP-S1 and DISP-S1-STATIC products are generated on a frame system, which groups together consecutive bursts from the input CSLC products. The projection system for a particular Frame ID is held constant through the product lifetime. Each product layer includes information indicating the projection used for the product.

### a. Map Projections

OPERA's SDS is able to ingest any Digital Elevation Model whose vertical datum represents height above the WGS84 Ellipsoid and the horizontal datum can be represented by a European Petroleum Standards Group (EPSG) code for generating geocoded product. Table B-00-1 lists the various projection systems used to output RTC-S1-STATIC products.

Table B-00-1. Projection Systems for L2 DISP-S1 Products

| EPSG code       | PROJ.4 string                                                    | Common Name    | Geographical scope                        |
|-----------------|------------------------------------------------------------------|----------------|-------------------------------------------|
| 32601-326<br>60 | +proj=utm +zone=X-32600<br>+datum=WGS84 +units=m +no_defs        | UTM Zone North | Northern Hemisphere Land except Greenland |
| 32701-327<br>60 | +proj=utm +zone=X-32700 +south<br>+datum=WGS84 +units=m +no_defs | UTM Zone South | Southern Hemisphere Land                  |

### b. Grid Alignment

OPERA DISP-S1 products will use a “pixel is area” convention. The “pixel is area” convention, which is the default, uses northing and easting coordinates Y and X, with (0,0) denoting the upper-left corner of the image, and increasing X to the east, increasing Y to the south. The first pixel value fills the grid cell with the top-left position (0,0) and bottom-right position (1,1).

## [AD4] APPENDIX B: ACRONYMS

|                      |                                                                             |
|----------------------|-----------------------------------------------------------------------------|
| AD                   | Applicable Document                                                         |
| ADT                  | Algorithm Development Team                                                  |
| ARD                  | Analysis Ready Data                                                         |
| ASF                  | Alaska Satellite Facility                                                   |
| ASF.DAAC             | NASA's Alaska Satellite Facility Distributed Active Archive Center          |
| CARD                 | CEOS Analysis Ready Data                                                    |
| CEOS                 | Committee on Earth Observation Satellites                                   |
| COMPASS              | COregistered Multi-tempPorAl Sar Slc (CSLC-S1 processor)                    |
| CSLC                 | Coregistered Single Look Complex                                            |
| CSLC-S1              | Coregistered Single Look Complex from Sentinel-1 A/B data                   |
| CSLC-S1-STATIC       | Coregistered Single Look Complex Static Layers from Sentinel-1 A/B          |
| COG                  | Cloud optimized GeoTIFF                                                     |
| DAAC                 | Distributed Active Archive Center                                           |
| DEM                  | Digital Elevation Model                                                     |
| ECEF                 | Earth Centered Earth Fixed                                                  |
| ESA                  | European Space Agency                                                       |
| Float32              | Floating-point number of 32 bits                                            |
| GDAL                 | Geospatial Data Abstraction Library                                         |
| GeoTIFF              | Georeferenced Tagged Image File Format                                      |
| GIS                  | Geographic Information System                                               |
| InSAR                | Interferometric Synthetic Aperture Radar                                    |
| ISCE3                | InSAR Scientific Computing Environment Enhanced Edition                     |
| OPERA                | Observational Products for End-users from Remote-sensing Analysis           |
| MHz                  | Mega-Hertz                                                                  |
| MOE                  | Medium-precision Orbit Ephemeris                                            |
| QA                   | Quality Assurance                                                           |
| RTC                  | Radiometric Terrain Correction                                              |
| RTC-S1               | Radiometric Terrain Corrected SAR backscatter from Sentinel-1               |
| RTC-S1-STATIC Layers | Radiometric Terrain Corrected SAR backscatter from Sentinel-1 Static Layers |
| SAR                  | Synthetic Aperture Radar                                                    |
| SAFE                 | Standard Archive Format for Europe                                          |
| SAS                  | Science Application Software                                                |
| SDS                  | Science Data System                                                         |
| SLC                  | Single Look Complex                                                         |

This document has been reviewed and determined not to contain export controlled technical data.

|        |                               |
|--------|-------------------------------|
| UInt8  | Unsigned Integers of 8 bits   |
| UInt16 | Unsigned Integers of 16 bits  |
| UPS    | Universal Polar Stereographic |
| URI    | Uniform Resource Identifier   |
| UTM    | Universal Transverse Mercator |
| WRS    | World Reference System        |